Inamori School of Engineering

Biomaterials Engineering (BME)
Program Outcomes and Objectives

Student with scopeProgram Overview

Faculty

What will you do with a bachelor of science degree in biomaterials engineering?
Program educational objectives (or PEOs) are broad statements that describe what we expect graduates of AU's biomaterials engineering program to attain 3-5 years after graduation. PEOs are reviewed and revised regularly to ensure that the program educational objectives are relevant to the needs of today's employers.

Program Educational Objectives
During the first few years after graduation:

  1. Graduates will be qualified for careers in the medical device industry alongside related, and general, materials fields. Graduates will occupy positions with high technical skill requirements and managerial responsibility.
  2. Graduates will be prepared to continue their educational endeavors in both technical and non-technical fields including graduate studies in Biomedical Engineering, Tissue Engineering, Medical Devices, general materials and other science and engineering majors; MBA programs, medical and veterinary schools, law school or short course/workshops applicable to growth within a chosen technical field.
  3. Graduates will be prepared to lead in the development of their professions including society activities, scholarly publications and student recruiting and mentoring.

What will you learn if you major in biomaterials engineering?
Program outcomes are the knowledge, skills, and abilities that we expect graduates of the program to attain at the time of graduation.

Program Outcomes (Student Learning Outcomes)
Graduates of the Biomaterials Engineering program at Alfred University will have:

  • An ability to apply knowledge of mathematics, science and engineering.
  • An ability to design and conduct experiments, as well as to analyze and interpret data.
  • An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
  • An ability to function on multidisciplinary teams.
  • An ability to identify, formulate, and solve engineering problems.
  • An understanding of professional and ethical responsibility.
  • An ability to communicate effectively.
  • The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
  • A recognition of the need for, and an ability to engage in life-long learning.
  • A knowledge of contemporary issues.
  • An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.